Contact Information

Course meets: Thursdays, 4:30 - 7:10 pm in Colgan Hall room 204.
Office hours (Fairfax campus): Mondays, 1 pm – 3 pm in the Krasnow Institute, room 115.
Otherwise by appointment on the Science & Tech campus: Discovery Hall room 305.
E-mail: (please use the subject line “BIOS 741”) - kfryxell@gmu.edu
Telephone: 703-993-1069.
Course web site: lecture notes, study problems, etc. will be posted on Blackboard.

Summary: Biology reached a turning point in February, 2001, with the publication of the euchromatic portion of the human genome. Progress since then in genetics, medicine, biotechnology, pharmacology, and many other fields has been increasingly dependent on the data, techniques and concepts of genomics. The basic facts of biology rely upon the molecular anatomy of our chromosomes, just as basic facts of physiology rely upon the anatomy of our nerves and muscles. However, the volume and complexity of genomic sequence data pose significant problems of interpretation, which will occupy biologists for generations to come.

Prerequisites: Graduate standing, plus at least one undergraduate course in genetics and one undergraduate course in molecular biology.

Readings: There is one required textbook for this class: Pevsner (2015) Bioinformatics and Functional Genomics (3rd edition, Wiley). The assigned readings from this text are listed below. An additional, introductory text that may be helpful is Gibson and Muse (2009) A Primer of Genome Science (3rd edition, Sinauer, Sunderland, MA), which is available for purchase in the bookstore, and also will be on 2 hr reserve in the Mercer library throughout the semester. Additional readings from the primary research literature will be assigned, and are listed below. These papers are generally available to registered students through the GMU library web site (library.gmu.edu). If not, copies will be posted on Blackboard.

Grading: Grades will be based on midterm (30%) and final (30%) examinations, plus attendance and active participation in class discussions (15%), an abstract of your term paper (5%) and the final draft of your term paper (20%). Midterm and final exams will be short essay, in-class, closed book exams. The midterm exam will cover the first half of the course; the final exam will cover the second half of the course. Midterm and final exams typically consist of about 5 questions, each of which requires an answer about one page in length. These exam questions will focus on the main points in the lectures and assigned readings, as identified by questions at the end of each chapter in the text, and plus Discussion Questions in the lecture notes (which will be posted on Blackboard). Students are expected to do the assigned readings before coming to class, and be prepared to participate in class discussions on these subjects. Makeup exams are not given in this course; excused absences from exams require prior permission from the instructor (that means a two-way conversation, not a voice mail or an e-mail). The use of cell phones (spoken or texting) during exams is not allowed.

As topics for term papers, each student will select a paper from the reading list, to be used as an initial focus for their term paper, and then choose a related focus (such as a hypothesis, controversy, or specific subfield) as the scope of their term paper. The abstract (150-300 words) will summarize and justify this specific focus. The final draft of the written term paper will be an expanded, critical discussion of the current scientific state of the art in the area of genomics. Term papers will be typed, double-spaced, including at least 15+ pages of text (plus an additional required title page, plus an additional required abstract page, plus additional required reference pages). Other items may be included (such as illustrations, quotes, acknowledgements, etc) but do not count towards the minimum length of the text. Your paper should cite at least 30 scientific papers (preferably more), all of which are included in your bibliography, and properly cited in your text. Please note that newspapers, internet web sites, course text books, etc. do not count as "scientific papers", and listing a paper in your bibliography without citing it does not count as a "citation". Plagiarism (copying text without proper attribution) is an Honor Code violation and will be prosecuted. However, you may paraphrase text from the scientific literature, provided that you immediately cite your source at the end of that sentence. The final version of your abstract should state your own critical conclusions [for example, advantages and disadvantages of particular approaches; which results and interpretations are (or are not) well supported; promising directions for the future, etc]. These conclusions should be justified (logically and with supporting evidence) in the text. Term papers and abstracts are due in class on the dates stated (see below), in paper printouts (not e-mail), with a 10% per day penalty for late papers.
Week 1 (August 31) Introduction to genomics
Pevsner text: pp. 720-727.

Week 2 (September 7) Sequencing methods, BAC fingerprinting, physical maps and FISH
Pevsner text: pp. 377-387; 399-403; 728-737; 966-968.
Lander, E.S. et al. (2001) Initial sequencing and analysis of the human genome. Nature 409, 860-921 (we will focus this week on pp. 860-875).

Week 3 (September 14) cDNA libraries, EST clusters, gene prediction and functional annotation
Pevsner text: pp. 433-459; 737-745.
Lander, E.S. et al. (2001) Initial sequencing and analysis of the human genome. Nature 409, 860-921. (we will focus this week on pp. 894-903).

Week 4 (September 21) Bacterial genomes
Pevsner text: pp. 307-309; 797-837.

Week 5 (September 28) Gene expression analysis
Pevsner text: pp. 460-472; 479-533.

Week 6 (October 5) Alternative splicing

Week 7 (October 12) Midterm Examination - covers weeks 1-6 (ABSTRACTS of term papers due today)

Week 8 (October 19) Proteomics
Pevsner text: pp. 539-580.

Week 9 (October 26) The eukaryotic chromosome: noncoding and repetitive sequences, chromosome rearrangements and gene families
Lander, E.S. et al. (2001) Initial sequencing and analysis of the human genome. Nature 409, 860-921. (we will focus this week on pp. 879-885; 887-889).
Week 10 (November 2) Genetic polymorphisms, population genetics and human genetics

Pevsner text: pp. 408-410; 986-1004; 1036-1049.

Week 11 (November 9) The human genome: codon bias, gene density, GC content, recombination, CpG islands

Pevsner text: pp. 806-808; pp. 812-825; 968-971; 981-986.

Lander, E.S. et al. (2001) Initial sequencing and analysis of the human genome. Nature 409, 860-921. (we will focus this week on pp. 875-879; 885-887; 892-894).

Week 12 (November 16) Epigenetics – DNA methylation

Week 13 (November 23) Thanksgiving Holiday

**Week 14 (November 30) class does not meet (VYTP meeting in Richmond)

Week 15 (December 7) Epigenetics - histone modifications

Term papers due today! Late penalty is 10% per day!

December 14 - Final Exam - 4:30 pm to 7:15 pm. Covers weeks 8-15.