BINF702 BIOLOGICAL DATA ANALYSIS - SPRING 2016

Instructor - Jeff Solka, 540-809-9799 (Cell), jlsolka@gmail.com

Office Hours - By Appointment

Schedule - Mondays 4:30 p.m. - 7:10 p.m. in Prince William Campus, Ocaquan Rm. 204B

Texts - Gareth James (Author), Daniela Witten (Author), Trevor Hastie (Author), Robert Tibshirani (Author), An Introduction to Statistical Learning: with Applications in R (Springer Texts in Statistics) Hardcover – August 12, 2013

Peter Dalgaard, Introductory Statistics With R (required)

Wim P. Krijnen, Applied Statistics for Bioinformatics using R, freely under the GNU Free document License

Grading - Grades will be based on 4-5 problem sets and an independent final project with an associated 8-10 page paper and 15 minute class presentation. All assessments will be open book and notes. Each of these will contribute to your grade as follows.

Problem Sets (80%), Final Project and Paper (10%) and Final Project and Paper Presentation (10%)

Students will be allowed to work in teams of 2 on their projects.

Weekly homework assignments will be provided but will not be graded. Solutions to the homework assignments will be provided each week. Grading will be on the following scale. 97-100 (A+), 93-96 (A), 90-92 (A-), 87-89 (B+), 80-86 (B), less than 80 C, Student averages will be rounded to the closest integer to determine final letter grades.

Guidence on the Course Project

Project Proposal: Student teams must prepare a brief proposal, 2-4 pages, describing the independent project and must submit this proposal no later than March 14, 2016. The proposal should be divided into four sections:

1. Background and objectives: A description of the background of the biological system and the question(s) that you hope to answer. In many cases this might involve reinvestigating a dataset that was already covered in the literature by other authors, i.e. the Golub data.

2. Computational methods: The computational methods that you intend to use to answer the question(s) in your proposal.

3. Discussion: A brief description of how you plan to evaluate the biological significance of the results of your computer analysis. It's very important in science to motivate your audience to care about your work with
its “Impact” or “Significance”.

4. Several references describing the background of your proposed project.

The proposal will not be graded, because its sole purpose is to determine whether the objectives of the project are reasonable and interesting.

Please note that the final project should be designed to test a biological hypothesis.

Final Report: The final report should be in the form of a scientific paper, divided into the following sections: (1) Abstract, (2) Background and objectives, (3) Computational methods, (4) Results and discussion, (5) Conclusions, (6) A brief description of how the conclusions of your analyses could be tested using biochemical or genetic techniques, (7) References.

References: Please follow the Cell Journal guidelines for references EXACTLY. I highly recommend that you use a referencing and bibliography software package like EndNote, Zotero, bibtex etc. (It will make your life much easier!) References in the text should include the authors’ names and dates:

- One author: (Pearson, 1996)
- Two authors: (Smith and Waterman, 1981)
- Three or more authors: (Altschul et al., 1990)
- Multiple references: (Pearson, 1996; Smith and Waterman, 1981; Altschul et al., 1990)

The references in the bibliography should also adhere to the Cell Journal format:

Organization: Please try to organize the information and the interpretations as clearly as possible. It is unreasonable to expect the reader to hunt through large numbers of pages to find data supporting a specific conclusion. There are two acceptable ways of organizing the figures. First, the data and text can be integrated into the body of the paper. Second, the data can be compiled into a series of clearly-labeled appendices.

Figures: Every figure should have a caption adequately describing the contents of the figure without having to resort to reading the main text. There must be at least 5 figures created by the student, and at least 4 of them must be created in R.

Length: The final report should be 10-12 pages double-spaced, not including computer output or references.

Presentation: The last lecture session will be devoted to oral presentations of the projects.

Course Content

Week 1 1/25/16
Biological Data Handout
R Syntax and Development Handout
Golub Handout
Golub Paper
Week 1 HW
Krijnen Chapter 1 R Script
Krijnen Chpt1 Solutions

Week 2 2/1/16
Data Display and Descriptive Statistics
Microarrays
Descriptive Statistics
Krijnen Chapter 2 R Script
Krijnen Chapter 2 HW Script

Week 3 2/8/16
Probability

Week 4 2/15/16
Statistical Distributions

Week 5 2/22/16
Estimation and Inference

Week 6 2/29/16
Linear Models

Spring Break 3/7/16 -- 3/13/16

Week 7 3/14/16
Micro Array Analysis

Week 8 3/21/16

Cluster Analysis

Week 9 3/28/16

Classification Methods

Week 10 4/4/16

Resampling Methods and the Bootstrap

Week 11 4/11/16

Markov Models and KnitR

Week 12 4/18/16

Experimental Design and Shiny

Week 13 4/25/16

The Implications of Big Data

Week 14 5/2/16 Student Presentations